Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A one-dimensional coordination polymer: catena-poly[[diagua(2,4dihydroxybenzoato)cadmium(II)]µ-2,4-dihydroxybenzoato]

Zi-Liang Wang^a* and Ying-Peng Niu^b

^aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ^bCollege of Physical Education Science, Henan University, Kaifeng 475001, People's Republic of China

Correspondence e-mail: zlwang@henu.edu.cn

Received 8 April 2007; accepted 7 May 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.068; data-to-parameter ratio = 12.4.

The title compound, $[Cd(C_7H_5O_4)_2(H_2O)_2]_n$, consists of a onedimensional chain, in which the Cd²⁺ centre is coordinated by four O atoms from two bidentate carboxylate groups of two 2,4-dihydroxybenzoate anions, two water molecules, and one hydroxyl O atom of another 2,4-dihydroxybenzoate anion. This results in a distorted pentagonal-bipyramidal CdO₇ polyhedron.

Related literature

For related literature, see: Tao et al. (2000), Thirumurugan & Natarajan (2004) and Zhang et al. (2005).

Experimental

Crystal data [Cd(C7H5O4)2(H2O)2] $M_r = 454.65$ Orthorhombic, Pbca a = 11.964 (2) Å b = 7.7882 (16) Å c = 33.893 (7) Å

 $V = 3158.1 (11) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 1.44 \text{ mm}^{-1}$ T = 292 (2) K 0.35 \times 0.20 \times 0.04 mm $R_{\rm int} = 0.036$

19791 measured reflections

3063 independent reflections

2847 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.633, T_{\max} = 0.945$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of
$wR(F^2) = 0.069$	independent and constrained
S = 1.05	refinement
3063 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
248 parameters	$\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ Å}^{-3}$
18 restraints	

Table 1

Selected bond lengths (Å).

Cd1-O9	2.196 (2)	$Cd1-O3^{i}$	2.397 (2)
Cd1-O10	2.268 (3)	Cd1-O5	2.428 (2)
Cd1-O6	2.327 (2)	Cd1-O1	2.459 (2)
Cd1-O2	2.364(2)		

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 03 - H31 \cdots 01 \\ 04 - H4A \cdots 08^{ii} \\ 07 - H7 \cdots 06 \\ 08 - H8 \cdots 07^{iii} \\ 09 - H91 \cdots 02^{iv} \\ 09 - H92 \cdots 05^{v} \\ 010 - H101 \cdots 02^{vi} \end{array}$	0.80 (5) 0.82 0.82 0.82 0.813 (10) 0.812 (10) 0.809 (10)	1.80 (5) 1.96 1.81 1.99 1.928 (11) 1.896 (10) 2.074 (15)	2.536 (3) 2.775 (3) 2.535 (3) 2.732 (3) 2.738 (3) 2.706 (3) 2.855 (3)	154 (5) 173 147 151 175 (3) 175 (3) 162 (3)
	· · ·	· · ·	· · ·	. ,

Symmetry codes: (ii) $-x + \frac{3}{2}$, -y + 1, $z + \frac{1}{2}$; (iii) $x - \frac{1}{2}$, y, $-z + \frac{1}{2}$; (iv) -x + 2, -y, -z + 1; (v) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (vi) -x + 2, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by the Basic Research Foundation for Natural Science of Henan University (grant No. 04YBRW053).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2367).

References

- Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.
- Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923-2928.
- Zhang, H. T., Li, Y. Z., Wang, H. Q., Nfor, E. N. & You, X. Z. (2005). CrystEngComm, 7, 578-585.

supplementary materials

Acta Cryst. (2007). E63, m1639 [doi:10.1107/S160053680702243X]

A one-dimensional coordination polymer: *catena*-poly[[diaqua(2,4-dihydroxybenzoato]

Z.-L. Wang and Y.-P. Niu

Comment

Design and synthesis of metal coordination polymers based on benzene carboxylates have been attracting chemist's interests and constitutes an important area of research (Thirumurugan & Natarajan, 2004). During the past years, lots of novel benzene multicarboxylates base compounds have been reported (Tao *et al.*, 2000; Zhang *et al.*, 2005). However, in those reported literatures, the common features tried to construct predictable one-, two, three-dimensional coordination networks by changing the numbers or relative position of carboxylates. In contrast, benzene carboxylates containing the hydroxyl can be utilized to coordinate to metal ions and generate unusual structures have never been reported. Herein, we report the title compound (I).

The title compound (I) present a one-dimensional chain $[Cd(C_7O_4H_5)_2(H_2O)_2]_n$, in which Cd^{2+} is coordinated by four oxygen atoms from two 2,4-dihydroxybenzoate anion, two water molecules, and one oxygen from the hydroxyl of another 2,4-dihydroxybenzoate anion. The environment of Cd ion is in a distorted pentagonal bipyramid (Fig. 1). In the equatorial plane, Cd1 ion is coordinated by four carboxylates oxygen (O1, O2, O5, O6) and one oxygen (O3b) of the hydroxyl. The Cd1—O distances range from 2.327 (2) to 2.459 (2)Å (Table 1). The mean deviation from the equatorial plane is 0.129 Å. The axial sites are occupied by two water oxygen atoms (O9 and O10) with Cd1—O lengths ranging from 2.196 (2) to 2.268 (3)Å (Table 1). The obvious differences of Cd1—O length show that the water more greatly interact with the Cd²⁺ ion than that of the carboxylate. The axial O9—Cd1—O10 bond angle is 177.80 (9) Å.

In addition, the intra-molecular hydrogen bonds exhibit in the compound, O7—H7 and O3—H31 acting as hydrogen bond donor, and O6 and O1 as hydrogen bond acceptor, constructing two S(6) rings (Fig. 1, Table 2). These units are linked into a one-dimensional chain-like structure by the hydroxyl oxygen atom O3 (Fig. 2).

Experimental

Solid CdCO₃ (1 mmol, 0.172 g) was added to an aqueous solution (25 ml) of 2,4-dihydroxybenzoic acid (2.0 mmol, 0.308 g). The mixture was stirred for 10 minutes under the temperature of 373 K. The solution was filtered, and the filtrate was kept at the room temperature. After ten days weeks, colorless crystals of (I) were obtained.

Refinement

The H atoms bonded to water were located in a difference synthesis and refined with distance restraints O—H = 0.82 (1) Å and H···H = 1.34 (2) Å and $U_{iso}(H) = U_{eq}(O)$. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å and O—H = 0.82 Å, and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms not involved in hydrogen bonds are omitted. [Symmetry code: (b) 1/2 + x, 1/2 - y, 1 - z]

Fig. 2. One-dimensional structure of (I), For clarity, H atoms not involved in hydrogen bonds are omitted.

catena-poly[[diaqua(2,4-dihydroxybenzoato)cadmium(II)]-µ-2,4-dihydroxybenzoato]

Crystal data	
$[Cd(C_7H_5O_4)_2(H_2O)_2]$	$F_{000} = 1808$
$M_r = 454.65$	$D_{\rm x} = 1.912 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 5177 reflections
a = 11.964 (2) Å	$\theta = 3.0-28.2^{\circ}$
b = 7.7882 (16) Å	$\mu = 1.44 \text{ mm}^{-1}$
c = 33.893 (7) Å	T = 292 (2) K
$V = 3158.1 (11) \text{ Å}^3$	Plate, colourless
<i>Z</i> = 8	$0.35 \times 0.20 \times 0.04 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector diffractometer	3063 independent reflections
Radiation source: fine-focus sealed tube	2847 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 292(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -14 \rightarrow 14$
$T_{\min} = 0.633, T_{\max} = 0.945$	$k = -9 \rightarrow 9$
19791 measured reflections	$l = -41 \rightarrow 41$

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of independent and constrained refinement

$\mathbf{P}(\mathbf{F}^2) = 0 \cdot 0$	$w = 1/[\sigma^2(F_0^2) + (0.0295P)^2 + 3.765P]$
$WR(F^{-}) = 0.069$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.002$
3063 reflections	$\Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$
248 parameters	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
18 restraints	Extinction correction: none
Drimony atom site location, structure inversiont direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.903474 (16)	0.23166 (3)	0.448614 (5)	0.02615 (9)
01	0.75857 (17)	0.2302 (3)	0.50006 (5)	0.0358 (5)
02	0.93525 (17)	0.2420 (3)	0.51741 (6)	0.0370 (5)
03	0.60334 (16)	0.2867 (4)	0.54931 (6)	0.0423 (6)
H31	0.635 (4)	0.265 (5)	0.5293 (14)	0.063*
O4	0.69862 (19)	0.4547 (4)	0.67789 (7)	0.0659 (8)
H4A	0.7529	0.4701	0.6922	0.099*
O5	0.74055 (18)	0.2508 (3)	0.40614 (6)	0.0383 (5)
O6	0.90716 (16)	0.2860 (3)	0.38111 (6)	0.0411 (5)
O7	0.93668 (17)	0.3721 (4)	0.30975 (6)	0.0560 (7)
H7	0.9543	0.3431	0.3322	0.084*
O8	0.62706 (19)	0.4682 (4)	0.22892 (7)	0.0636 (8)
H8	0.5632	0.4326	0.2256	0.095*
O9	0.91561 (19)	-0.0476 (3)	0.44064 (8)	0.0487 (6)
H91	0.9608 (19)	-0.100 (3)	0.4540 (8)	0.033 (9)*
H92	0.871 (2)	-0.113 (3)	0.4305 (9)	0.039 (9)*
O10	0.8982 (2)	0.5205 (3)	0.45687 (8)	0.0489 (6)
H101	0.949 (2)	0.571 (4)	0.4677 (8)	0.049*
H102	0.886 (3)	0.551 (4)	0.4348 (4)	0.049*
C1	0.8319 (2)	0.2536 (3)	0.52658 (8)	0.0288 (6)
C2	0.7975 (2)	0.3003 (4)	0.56677 (7)	0.0260 (5)
C3	0.6847 (2)	0.3185 (4)	0.57667 (7)	0.0274 (6)
C4	0.6530 (2)	0.3707 (4)	0.61387 (8)	0.0373 (7)
H4	0.5778	0.3843	0.6200	0.045*

supplementary materials

C5	0.7336 (2)	0.4025 (4)	0.64192 (8)	0.0374 (7)
C6	0.8462 (2)	0.3834 (5)	0.63318 (8)	0.0412 (8)
H6	0.9002	0.4036	0.6524	0.049*
C7	0.8769 (2)	0.3343 (5)	0.59590 (9)	0.0383 (7)
H7A	0.9524	0.3234	0.5899	0.046*
C8	0.8016 (2)	0.2865 (4)	0.37699 (8)	0.0310 (6)
C9	0.7541 (2)	0.3296 (4)	0.33825 (8)	0.0312 (6)
C10	0.8238 (2)	0.3718 (4)	0.30639 (8)	0.0357 (7)
C11	0.7786 (2)	0.4173 (5)	0.27043 (8)	0.0448 (8)
H11	0.8254	0.4477	0.2497	0.054*
C12	0.6648 (3)	0.4178 (5)	0.26516 (9)	0.0432 (8)
C13	0.5936 (2)	0.3759 (6)	0.29596 (10)	0.0500 (10)
H13	0.5165	0.3771	0.2924	0.060*
C14	0.6393 (2)	0.3325 (5)	0.33174 (9)	0.0411 (8)
H14	0.5917	0.3038	0.3524	0.049*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02635 (12)	0.03452 (14)	0.01758 (12)	0.00370 (8)	-0.00053 (7)	-0.00107 (8)
01	0.0321 (10)	0.0571 (14)	0.0182 (9)	0.0013 (9)	-0.0009 (8)	-0.0076 (9)
02	0.0271 (10)	0.0589 (14)	0.0249 (11)	0.0110 (9)	0.0036 (8)	-0.0027 (9)
03	0.0221 (11)	0.0808 (18)	0.0240 (12)	-0.0032 (10)	-0.0025 (8)	-0.0144 (11)
O4	0.0374 (12)	0.135 (3)	0.0259 (12)	-0.0068 (15)	0.0072 (10)	-0.0328 (14)
05	0.0383 (11)	0.0570 (14)	0.0196 (10)	0.0076 (10)	0.0051 (9)	0.0051 (9)
O6	0.0298 (11)	0.0700 (16)	0.0234 (11)	0.0086 (10)	-0.0049 (8)	0.0051 (10)
07	0.0200 (10)	0.120 (2)	0.0282 (11)	-0.0045 (12)	-0.0004 (9)	0.0217 (14)
08	0.0331 (12)	0.129 (3)	0.0284 (12)	-0.0190 (14)	-0.0113 (9)	0.0305 (14)
09	0.0404 (13)	0.0364 (13)	0.0692 (17)	0.0016 (10)	-0.0271 (12)	-0.0001 (12)
O10	0.0490 (8)	0.0467 (8)	0.0511 (8)	0.0002 (6)	0.0005 (6)	0.0001 (6)
C1	0.0294 (14)	0.0336 (15)	0.0234 (14)	0.0049 (11)	0.0006 (11)	-0.0010 (11)
C2	0.0279 (13)	0.0346 (15)	0.0153 (12)	0.0014 (11)	0.0011 (10)	-0.0032 (11)
C3	0.0222 (12)	0.0388 (15)	0.0213 (13)	-0.0018 (11)	-0.0021 (10)	-0.0026 (11)
C4	0.0235 (14)	0.063 (2)	0.0249 (14)	-0.0066 (13)	0.0042 (11)	-0.0097 (14)
C5	0.0331 (15)	0.059 (2)	0.0197 (13)	-0.0068 (14)	0.0023 (11)	-0.0089 (13)
C6	0.0288 (15)	0.071 (2)	0.0233 (15)	-0.0037 (14)	-0.0057 (12)	-0.0128 (14)
C7	0.0222 (13)	0.065 (2)	0.0281 (15)	0.0025 (14)	-0.0004 (11)	-0.0082 (15)
C8	0.0316 (14)	0.0402 (16)	0.0212 (13)	0.0064 (12)	0.0003 (11)	-0.0006 (11)
C9	0.0274 (13)	0.0453 (17)	0.0211 (13)	0.0005 (12)	0.0003 (11)	0.0032 (12)
C10	0.0210 (13)	0.061 (2)	0.0251 (14)	-0.0028 (13)	-0.0016 (11)	0.0046 (13)
C11	0.0273 (15)	0.086 (3)	0.0211 (14)	-0.0115 (16)	-0.0002 (11)	0.0129 (15)
C12	0.0337 (16)	0.074 (2)	0.0219 (15)	-0.0074 (15)	-0.0075 (12)	0.0116 (15)
C13	0.0219 (15)	0.094 (3)	0.0345 (18)	-0.0077 (16)	-0.0028 (12)	0.0161 (18)
C14	0.0253 (14)	0.073 (2)	0.0253 (15)	-0.0031 (15)	0.0042 (11)	0.0111 (15)

Geometric parameters (Å, °)

Cd1—O9	2.196 (2)	O10—H101	0.809 (10)
Cd1—O10	2.268 (3)	O10—H102	0.798 (10)

Cd1—O6	2.327 (2)	C1—C2	1.469 (4)
Cd1—O2	2.364 (2)	C2—C7	1.396 (4)
Cd1—O3 ⁱ	2.397 (2)	C2—C3	1.398 (4)
Cd1—O5	2.428 (2)	C3—C4	1.378 (4)
Cd1—O1	2.459 (2)	C4—C5	1.377 (4)
01—C1	1.270 (3)	C4—H4	0.9300
O2—C1	1.278 (4)	C5—C6	1.387 (4)
O3—C3	1.367 (3)	С6—С7	1.370 (4)
O3—Cd1 ⁱⁱ	2.397 (2)	С6—Н6	0.9300
O3—H31	0.80 (5)	С7—Н7А	0.9300
O4—C5	1.352 (3)	C8—C9	1.470 (4)
O4—H4A	0.8200	C9—C14	1.391 (4)
O5—C8	1.260 (3)	C9—C10	1.403 (4)
O6—C8	1.270 (3)	C10-C11	1.379 (4)
O7—C10	1.356 (3)	C11—C12	1.373 (4)
O7—H7	0.8200	C11—H11	0.9300
O8—C12	1.366 (3)	C12—C13	1.386 (4)
O8—H8	0.8200	C13—C14	1.372 (4)
O9—H91	0.813 (10)	С13—Н13	0.9300
О9—Н92	0.812 (10)	C14—H14	0.9300
O9—Cd1—O10	177.80 (9)	C7—C2—C1	120.8 (2)
O9—Cd1—O6	93.31 (9)	C3—C2—C1	121.3 (2)
O10-Cd1-O6	86.65 (9)	O3—C3—C4	118.6 (2)
O9—Cd1—O2	98.31 (9)	O3—C3—C2	120.4 (2)
O10-Cd1-O2	81.31 (8)	C4—C3—C2	121.0 (2)
O6—Cd1—O2	163.85 (8)	C5—C4—C3	119.5 (3)
O9—Cd1—O3 ⁱ	83.02 (9)	C5—C4—H4	120.3
O10—Cd1—O3 ⁱ	94.78 (9)	C3—C4—H4	120.3
O6—Cd1—O3 ⁱ	91.19 (7)	O4—C5—C4	117.4 (3)
O2—Cd1—O3 ⁱ	79.20 (7)	O4—C5—C6	121.7 (3)
O9—Cd1—O5	92.35 (8)	C4—C5—C6	120.9 (3)
O10-Cd1-O5	89.42 (8)	C7—C6—C5	119.2 (3)
O6—Cd1—O5	54.63 (7)	С7—С6—Н6	120.4
O2—Cd1—O5	135.39 (7)	С5—С6—Н6	120.4
O3 ⁱ —Cd1—O5	145.31 (7)	C6—C7—C2	121.5 (3)
O9—Cd1—O1	97.43 (9)	С6—С7—Н7А	119.2
O10-Cd1-O1	84.11 (8)	С2—С7—Н7А	119.2
O6—Cd1—O1	135.35 (7)	O5—C8—O6	119.3 (3)
O2—Cd1—O1	54.13 (7)	O5—C8—C9	121.8 (3)
O3 ⁱ —Cd1—O1	133.03 (7)	O6—C8—C9	118.9 (2)
O5-Cd1-O1	81.64 (7)	O5—C8—Cd1	61.99 (15)
C1—O1—Cd1	90.81 (17)	O6—C8—Cd1	57.45 (14)
C1—O2—Cd1	94.99 (17)	C9—C8—Cd1	174.7 (2)
C3—O3—Cd1 ⁱⁱ	134.54 (17)	C14—C9—C10	117.4 (2)
C3—O3—H31	106 (3)	C14—C9—C8	121.8 (2)
$Cd1^{ii}$ —O3—H31	120 (3)	C10—C9—C8	120.7 (3)
C5-04-H4A	109.5	07-010-011	1176(2)
	•		

supplementary materials

C8—O5—Cd1	90.73 (17)	O7—C10—C9	121.9 (2)			
C8—O6—Cd1	95.15 (17)	C11—C10—C9	120.5 (3)			
С10—О7—Н7	109.5	C12-C11-C10	120.3 (3)			
С12—О8—Н8	109.5	C12—C11—H11	119.9			
Cd1—O9—H91	118.1 (18)	C10-C11-H11	119.9			
Cd1—O9—H92	128.9 (19)	O8—C12—C11	116.5 (3)			
H91—O9—H92	110.9 (17)	O8—C12—C13	122.8 (3)			
Cd1-O10-H101	121 (2)	C11—C12—C13	120.7 (3)			
Cd1-O10-H102	101 (2)	C14—C13—C12	118.6 (3)			
H101—O10—H102	114.2 (18)	C14—C13—H13	120.7			
O1—C1—O2	119.1 (3)	С12—С13—Н13	120.7			
O1—C1—C2	119.9 (2)	C13—C14—C9	122.5 (3)			
O2—C1—C2	121.0 (2)	C13—C14—H14	118.8			
C7—C2—C3	117.9 (2)	C9—C14—H14	118.8			
Symmetry codes: (i) $x+1/2$, $-y+1/2$, $-z+1$; (ii) $x-1/2$, $-y+1/2$, $-z+1$.						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H31…O1	0.80 (5)	1.80 (5)	2.536 (3)	154 (5)
O4—H4A···O8 ⁱⁱⁱ	0.82	1.96	2.775 (3)	173
O7—H7…O6	0.82	1.81	2.535 (3)	147
O8—H8···O7 ^{iv}	0.82	1.99	2.732 (3)	151
O9—H91…O2 ^v	0.813 (10)	1.928 (11)	2.738 (3)	175 (3)
O9—H92…O5 ^{vi}	0.812 (10)	1.896 (10)	2.706 (3)	175 (3)
O10—H101···O2 ^{vii}	0.809 (10)	2.074 (15)	2.855 (3)	162 (3)
	1/2 1/2 ()		1/2 (

Symmetry codes: (iii) -x+3/2, -y+1, z+1/2; (iv) x-1/2, y, -z+1/2; (v) -x+2, -y, -z+1; (vi) -x+3/2, y-1/2, z; (vii) -x+2, -y+1, -z+1.

Fig. 1

Fig. 2

